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ABSTRACT

The use and application of the COBSTRAN (COmposite Blade STRuctural

ANalyzer) computer code is presented. COBSTRAN was developed at the NASA

Lewis Research Center and is currently being used for the design and analy-

sis of aircraft engine ducted and unducted fan blades. The features of

COBSTRAN are demonstrated for the modeling and analysis of a scaled-down

wind tunnel model propfan blade made from fiber composites. Comparison of

analytical and experimental mode shapes and frequencies are shown, verifying

the model development and analysis techniques used. The methodologies and

programs developed for this analysis are directly applicable to other prop-
fan blades.
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TURBOPROP INSTALLATION IN LEWIS RESEARCH CENTER WIND TUNNEL 

An advanced turboprop is shown installed for testing in the NASA Lewis 
Research Center 8 Foot by 6 Foot Transonic Wind Tunnel. This turboprop is 
2 ft in diameter with blades swept back at an angle of 60' measured tangent 
to the leading edge at three-quarter span. The individual blades are 
twisted about the spanwise axis, swept aft, and curved about the axis of 
rotation. The blades shown are made of titanium and were tested at speeds 
up to approximately 8000 rpm. 
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COBSTRANMODELINGOFA SPAR/SHELLCOMPOSITETURBOPROPBLADE

This scaled-down version of a large advanced turboprop blade (Hirschbein
et al., 1985) is designed with an internal solid titanium spar which is
extended to form the blade shank. Layers of unidirectional graphite/epoxy
plies are attached directly over the spar. The airfoil shell surrounding
the spar is madeof fiberglass/epoxy cross-weave plies. The shell cavity in
the lower two-thirds of the blade is filled with foam and the cavity in the
upper-third is filled with fiberglass/epoxy cross-weave plies. The finite
element model of this blade was generated by using the COBSTRAN(COmposite
Blade STRuctural ANalyzer) code. The model consists of 449 two-dimensional
triangular elements and a bar element representing the shank. COBSTRAN
calculates the anisotropic material properties at each grid point using
laminate theory, and the individual ply properties are calculated by the
COBSTRANcomposite micromechanics module. Grid point properties are then
averaged for each element.
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COBSTRANANALYTICALPROCESS

The COBSTRANcode contains an internal databank of constitutive properties
for 21 fiber types and 17 matrix types. Starting with these properties the
composite ply properties are calculated for each fiber/matrix layer used in
the design of the blade (Chamis, 1971). The ply layup at each grid point is
determined by COBSTRAN,and the grid point properties are calculated using
laminate theory. A global structural finite element analysis model is
generated, and the applicable structural analysis is performed. Stress
results from this analysis are evaluated and corresponding membraneforces
and momentsare calculated for each grid point. From these forces and
moments,using laminate theory, individual ply stresses, strains, and failure
criteria are calculated for each ply layer at each grid point.
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COBSTRANGENERATEDPLYPROPERTIESVERSUSMANUFACTURER'STESTVALUES

The COBSTRANcode is designed to generate individual ply properties from the
constitutive properties of the fiber and matrix. A unique feature of
COBSTRAN,in addition to its internal databank, is that an external user-
supplied databank will override the internal databank. This feature is uti-
lized to generate ply properties compatible with a particular manufacturer's
test results. The external databank is modified and the COBSTRANpreproces-
sor is used iteratively to generate the desired properties. The table below
shows the results of COBSTRANgenerated values versus manufacturer's test
values. There exist somediscrepancies when isotropic material properties
are calculated from fiber and matrix micromechanics equations. However,
this representation is nec%ssarybecause COBSTRAN,internally, requires more
ply properties than can be obtained from tests.

UNITS,
ksi

E1

E2

E12

SOURCE FIBERGLASS PAINT
(00190° CROSS-WEAVE (00190* CROSS-WEAVE

0.0055.1N. THICK) O.O02-1N.THICK)
i

COBSTRAN 3 516 2 370

MFG 3 510 2 370

COBSTRAN 3 500 2 340

MFG 3 510 2 3?0

COBSTRAN 737 511

MFG 767 517

GRAPHITE TITANIUM FOAM
(0°10" LAY-UP

O.O07-1N.THICK) i

13 730

13 800

1 010

1 090

48O

58O

16 580 9.800

16 000 9.800

18 000 9.589

16 000 9.800

6 190 4.944

6 100 3.630

CD-M-31977
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COBSTRAN PLY INPUT REPRESENTATION

The COBSTRAN code produces an integrated lamination model of an entire blade

from user-defined constant thickness patches over the surface of the blade

and through the thickness. Each patch is made from a specified material

system (fiber, matrix, thickness, orientation angle, fiber volume ratio,

etc.) and covers a specified region of the blade defined by percent span and

percent chord. The integration of these patches for each grid point is

determined by COBSTRAN from a user-supplied global layup order.

COBSTRANPLY INPUT REPRESENTATION

• PATCHESDEFINEDOVER
SURFACEAND THROUGH
THICKNESS

, TWODIMENSIONAL
/ PATCH

• COBSTRANBUILDS A
COMPLETEBLADE
MODEL

• EACH PATCHIS MADE
FROM A SPECIFIED
MATERIAL

• EACH PATCHCOVERS
A SPECIFIED REGION
OF THE BLADE

PERCENTSPAN

I ' ' . ---

i I

• CONSTANTTHICKNESS
PATCHES

CD-88-31978
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COBSTRAN TW0-DIMENSIONAL LAMINATED BLADE MODELING

The typical advanced composite turboprop blade cross-section shown is

designed utilizing a solid internal metal spar and a composite airfoil

shell. Shell cavities in the leading and trailing edges are foam filled.

This complex blade structure can be simulated effectively by two-dimensional

finite elements with one element through the thickness. By modeling the

metal, foam, and adhesive as ply layers and utilizing the COBSTRAN code, the

two-dimensional anisotropic material properties are calculated for each grid

point by laminate analysis. Grid point properties are then averaged for
each element.

FOAM
>--ADHESIVE-"<
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EFFECTS OF MATERIAL PROPERTY COMBINATIONS ON FREE FREQUENCIES

The COBSTRAN code calculates the bending, membrane, transverse shear proper-

ties, and the membrane-bending coupling relationship for all elements of the

composite turboprop blade. These properties may be selectively used in the

finite element analysis. The contribution of a particular material property

to the frequency is a function of the blade activity indicated by the mode

shape of vibration. Three different material combinations were considered
for this study. Coupling was not a factor because of symmetry in the blade

layup. Results are compared with holographic test frequencies (Mehmed,

1983). For the column labeled "Bending" bending properties were used to

represent bending and membrane properties. Transverse shear effects were
considered negligible. For the column labeled "Membrane and Bending" both

properties were used separately in the analysis. Transverse shear effects

were considered negligible. For the third column, all three properties were

used in the analysis.

MODE

1

2

3

4

5

6

ELEMENTPROPERTIESUSED IN ANALYSIS

BENDING,
Hz

HOLOGRAPHIC
TEST RESULTS, Hz

MEMBRANEAND
BENDING, Hz

MEMBRANE, BENDINGAND
TRANSVERSESHEAR, Hz

154 158 147 155

338 339 334 326

373 369 364 377

585 571 561 545

655 650 635 638

1011 1005 986 921

CD-88-31980
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PREDICTED NATURAL FREQUENCIES AND MODE SHAPES 

The first five calculated frequencies and mode shapes are represented for a 
composite turboprop blade. The finite element model used for this analysis 
was generated by utilizing the COBSTRAN code. Eigenvectors were normalized 
to the maximum tip displacement. The solid black surfaces (see arrows) indi- 
cate areas of zero or negligible motion during each natural vibration mode. 
Predicting these mode shapes is important to understanding and analyzing 
blade flutter characteristics. 
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MEASURED NATURAL FREQUENCIES AND MODE SHAPES 

The first seven frequencies and mode shapes shown were experimentally deter- 
mined. The composite blade was acoustically excited and photographed with a 
holographic technique (Mehmed, 1983). 
indicate areas of zero or negligible motion during each natural vibration 
mode. 
with a finite element model generated by the COBSTRAN code. 

The solid bright surfaces (see arrows) 

These frequencies and mode shapes are comparable to those calculated 

MEASURED NATURAL FREQUENCIES AND MODE SHAPES 

1F 1E 2F 1T 
155 Hz 326 Hz 377 Hz 545 Hz 

3F 2T 4F 
638 Hz 921 Hz 996 Hz 
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FREQUENCYSENSITIVITYTOSTRUCTURAL AND LOAD CONSIDERATIONS

The ability to predict frequencies and mode shapes early in the design phase

is important to the development of composite turboprop blades. The effects

of airloads, protective paint, and a shank (instrumentation) hole on frequen-

cies have been studied. Airloads and shank hole effects were not significant

considerations in the analysis of this turboprop blade. However, the protec-

tive paint layer, 0.002-in. thick, did affect the frequency calculations.

The paint on the blade surface tended to reduce the calculated frequencies

enough to be included in all analyses. The last column shows results from

an independent finite element analysis (Nagle et al., 1986).

[NATURALFREQUENCIES(Hz) AT 7484 rpm, AIRLOADSAT 35 O00-RALTITUDE.]

MODE

1

2

3

4

5

!WITH AIRLOADS,
WITH PAINT,
WITH SHANK

HOLE

202.30

366.28

461.41

623.32

WITHOUTAIRLOADS,
WITH PAINT,

WITH SHANKHOLE

FREOUENCY,Hz
i

WITHAIRLOADS,
WITHOUTPAINT,

WITHSHANK
HOLE

202.04 205.13
,, u , :,

366.34 374.16

459.83 462.08

626.27 634.05

780.39 786.05

WITH AIRLOADS,
WITH PAINT,

WITHOUTSHANK
HOLE

202.16

WITH AIRLOADS,
WITHOUTPAINT,
WITHOUTSHANK

HOLE
(F.E. ANALYSIS)

207.5

387.07 376.0
, ,,,, _| ,,

460.07 468.6
,

626.40 642.5

780.67 782.3

CD-88--31983
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TURBOPROP BLADE INSTRUMENTED FOR STRAIN MEASUREMENT 

This instrumented turboprop blade was used to evaluate strain results during 
vibration testing. The COBSTRAN code was used to determine strain gage 
placement prior to testing. COBSTRAV calculates the strains in all ply 
layers at each grid point. Relative strain values were calculated by using 
the normalized eigenvectors as displacements. This identified the areas of 
largest strain for each vibration mode. During rotational tests the criti- 
cal strain conditions were flagged by knowing the relation between the 
measured strains and high strain areas. 

CD-88-31984 
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PREDICTEDVERSUSMEASUREDNORMALIZEDSURFACESTRAINS

The first figure shows the position of six strain gages on the camber sur-
face of a composite turboprop blade. Gagepositions were determined with
the COBSTRANcode. The blade was excited in the third modeof vibration.
The table shows the results of measured(Mehmed,1983) and calculated
strains for this vibration mode. The actual strains were very small and
difficult to measure. Both sets of data were normalized to gage number4.
Gagenumber 2 failed and therefore is not shownin the table. Comparison
was good overall, with gage number I showing the largest discrepancy. This
gage was located on the thickest part of the blade, the most difficult area
to measurestrain.

STRAINS NORMALIZEDTO GAGENUMBER 4
(THIRD MODE OF VIBRATION)

GAGE MEASURED DATA COBSTRANANALYSIS
NUMBER

1 0.152 0.106

3 .386 .340
i

4 1.000 1.000

5 .519 .650

6 .122 .144

E .377 .440

F .152 .138

NOTE: GAGES E AND F SHOWN OUT OF
TRUE CIRCUMFERENTIAL POSITION

LOCATION AND ORIENTATION OF
STRAIN GAGES ON CAMBER/
CONVEX SURFACE

C D-88-31985
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CALCULATEDANDTESTFREQUENCIESVERSUSROTATIONALSPEED

The ability to predict blade frequencies when a blade is subjected to centrifu-
gal forces is important in the design of composite turboprop blades (Aiello
and Chamis, 1982). The calculated frequencies were generated by using a
finite element model that was generated by the COBSTRANcode. These are indi-
cated by the solid lines. The measured frequencies were obtained by spectral
analysis of strain gage data resulting from tests in the NASALewis 9 Foot by
15 Foot WindTunnel (Mehmed,1983) and are indicated by the dashed lines.

CALCULATEDCOBSTRANVALUES
"------ SPECTRALANALYSIS--STRAIN GAGE DATA

800 --

6OO
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